
VectSharp: a light library for C# vector graphics

LicenseLicense LGPL v3LGPL v3 nugetnuget v2.5.0v2.5.0

Introduction

VectSharp is a library to create vector graphics (including text) in C#,
without too many dependencies.

VectSharp is written using .NET Core, and is available for Mac, Windows
and Linux. Since version 2.0.0, it is released under an LGPLv3 license. It
includes 14 standard fonts, originally released under an ASL-2.0 license.

It includes an abstract layer on top of which output layers can be written.
Currently, there are five available output layers:

VectSharp.PDF produces PDF documents.
VectSharp.Canvas produces an Avalonia.Controls.Canvas object (
https://avaloniaui.net/docs/controls/canvas) containing the rendered graphics objects.
VectSharp.SVG produces vector graphics in SVG format.
VectSharp.Raster produces raster images in PNG format, (this is done by rendering the image to a
PDF document, and then using the MuPDFCore library to render the PDF). Since version 2.0.0,
VectSharp.Raster is released under an AGPLv3 licence.
VectSharp.Raster.ImageSharp produces raster images in multiple formats (BMP, GIF, JPEG, PBM,
PNG, TGA, TIFF, WebP) using the SixLabors.ImageSharp library.

VectSharp.Raster and VectSharp.Raster.ImageSharp are somewhat overlapping, as both of them can be used to
create PNG images. However, VectSharp.Raster is much faster, though it only supports the PNG format. Instead,
VectSharp.Raster.ImageSharp is slower, but supports more formats and has a more permissive licence. Another
difference is that VectSharp.Raster carries a native dependency (through MuPDFCore), while
VectSharp.ImageSharp does not.

Furthermore:

The VectSharp.Plots package contains classes and methods to draw plots (such as scatter plots, line
charts, bar charts, box plots, function plots, and more).

VectSharp.ThreeD adds support for 3D vector and raster graphics.

VectSharp.Markdown can be used to transform Markdown documents into VectSharp objects, that
can then be exported e.g. as PDF or SVG files, or displayed in an Avalonia Canvas .
VectSharp.MarkdownCanvas uses VectSharp.Markdown to render Markdown documents in Avalonia
applications (an example of this is in the MarkdownViewerDemo project).

VectSharp.MuPDFUtils, released under an AGPLv3 licence, contains some utility functions that use
MuPDFCore to make it possible to include in VectSharp graphics images in various formats.

VectSharp.ImageSharpUtils adds the same capabilities as VectSharp.MuPDFUtils, using ImageSharp
instead of MuPDFCore; as a result, it is released under a more permissive LGPLv3 licence.

VectSharp.Fonts.Nimbus is a package released under a GPLv3 license, which contains the standard
fonts that were used in VectSharp before version 2.0.0. Since these fonts are released under a GPL
license, they had to be replaced when the VectSharp license changed to LGPL. See the Font libraries
below for information on how to re-enable these fonts.

The Animation class (provided in the base VectSharp package) can be used to create animations that
can be saved as animated GIFs (using VectSharp.Raster.ImageSharp), SVGs (using VectSharp.SVG)

https://avaloniaui.net/docs/controls/canvas
https://avaloniaui.net/docs/controls/canvas
https://github.com/arklumpus/MuPDFCore
https://github.com/arklumpus/MuPDFCore
https://github.com/SixLabors/ImageSharp
https://github.com/SixLabors/ImageSharp
https://arklumpus.github.io/VectSharp/plots.html
https://arklumpus.github.io/VectSharp/plots.html
https://github.com/arklumpus/VectSharp/tree/master/VectSharp.ThreeD
https://github.com/arklumpus/VectSharp/tree/master/VectSharp.ThreeD
https://github.com/arklumpus/VectSharp/tree/master/VectSharp.Markdown
https://github.com/arklumpus/VectSharp/tree/master/VectSharp.Markdown
https://github.com/arklumpus/VectSharp/tree/master/MarkdownViewerDemo
https://github.com/arklumpus/VectSharp/tree/master/MarkdownViewerDemo
https://github.com/arklumpus/VectSharp/tree/master/MarkdownViewerDemo
https://github.com/arklumpus/MuPDFCore
https://github.com/arklumpus/MuPDFCore
about:section
about:section
about:section


and PNGs (using VectSharp.Raster or VectSharp.Raster.ImageSharp).

Installing VectSharp

To include VectSharp in your project, you will need one of the output layer NuGet packages: VectSharp.PDF,
VectSharp.Canvas, VectSharp.Raster, VectSharp.Raster.ImageSharp, or VectSharp.SVG. You will need
VectSharp.ThreeD to work with 3D graphics or VectSharp.Plots to create plots. You may want the
VectSharp.MuPDFUtils package if you wish to manipulate raster images, and the VectSharp.Fonts.Nimbus if you
want to restore the GPL-licensed fonts used in previous versions of the library.

Usage

You can find detailed documentation for the VectSharp library, including interactive examples, at the
documentation website. A comprehensive API reference is also available, both as a website and as a PDF
manual.

In general, working with VectSharp involves: creating a Document , adding Page s, drawing to the Page s’
Graphics objects and, finally, exporting them to a PDF document, Canvas , PNG image or SVG document.

Create a Document :

using VectSharp;
// ...

https://www.nuget.org/packages/VectSharp.PDF/
https://www.nuget.org/packages/VectSharp.PDF/
https://www.nuget.org/packages/VectSharp.Canvas/
https://www.nuget.org/packages/VectSharp.Canvas/
https://www.nuget.org/packages/VectSharp.Raster/
https://www.nuget.org/packages/VectSharp.Raster/
https://www.nuget.org/packages/VectSharp.Raster.ImageSharp/
https://www.nuget.org/packages/VectSharp.Raster.ImageSharp/
https://www.nuget.org/packages/VectSharp.SVG/
https://www.nuget.org/packages/VectSharp.SVG/
https://www.nuget.org/packages/VectSharp.ThreeD/
https://www.nuget.org/packages/VectSharp.ThreeD/
https://www.nuget.org/packages/VectSharp.Plots/
https://www.nuget.org/packages/VectSharp.Plots/
https://www.nuget.org/packages/VectSharp.MuPDFUtils/
https://www.nuget.org/packages/VectSharp.MuPDFUtils/
https://www.nuget.org/packages/VectSharp.Fonts.Nimbus/
https://www.nuget.org/packages/VectSharp.Fonts.Nimbus/
https://arklumpus.github.io/VectSharp
https://arklumpus.github.io/VectSharp
https://arklumpus.github.io/VectSharp
https://arklumpus.github.io/VectSharp/api
https://arklumpus.github.io/VectSharp/api
https://arklumpus.github.io/VectSharp/api/VectSharp.pdf
https://arklumpus.github.io/VectSharp/api/VectSharp.pdf
https://arklumpus.github.io/VectSharp/api/VectSharp.pdf
https://arklumpus.github.io/VectSharp/api/VectSharp.pdf


Document doc = new Document();

Add a Page :

doc.Pages.Add(new Page(1000, 1000));

Draw to the Page ’s Graphics object:

Graphics gpr = doc.Pages.Last().Graphics;
gpr.FillRectangle(100, 100, 800, 800, Colour.FromRgb(128, 128, 128));

Save as PDF document:

using VectSharp.PDF;
//...
doc.SaveAsPDF(@"Sample.pdf");

Export the graphics to a Canvas :

using VectSharp.Canvas;
//...
Avalonia.Controls.Canvas can = doc.Pages.Last().PaintToCanvas();

Export the graphics to a Canvas , using a multi-layer, multi-threaded, triple-buffered renderer based on
SkiaSharp (which provides the best performance if you wish e.g. to place the canvas within a
ZoomBorder ):

using VectSharp.Canvas;
//...
// A single page
Avalonia.Controls.Canvas can = doc.Pages.Last().PaintToSKCanvas();

// The whole document - each page will correspond to a layer
Avalonia.Controls.Canvas can = doc.PaintToSKCanvas();

Save as a PNG image:

using VectSharp.Raster;
//...
doc.Pages.Last().SaveAsPNG(@"Sample.png");

Save as a JPEG image:

using VectSharp.Raster.ImageSharp;
//...
doc.Pages.Last().SaveAsImage(@"Sample.jpg");

Save as an SVG document:

using VectSharp.SVG;
//...
doc.Pages.Last().SaveAsSVG(@"Sample.svg");

PDF and SVG documents support both internal and external links:

using VectSharp;
using VectSharp.PDF;
using VectSharp.SVG;
//...
Document document = new Document();
Page page = new Page(1000, 1000);
document.Pages.Add(page);

https://github.com/wieslawsoltes/PanAndZoom
https://github.com/wieslawsoltes/PanAndZoom
https://github.com/wieslawsoltes/PanAndZoom
https://github.com/wieslawsoltes/PanAndZoom
https://github.com/wieslawsoltes/PanAndZoom


page.Graphics.FillRectangle(100, 100, 800, 50, Colour.FromRgb(128, 128, 128),

tag: "linkToGitHub");
page.Graphics.FillRectangle(100, 300, 800, 50, Colour.FromRgb(255, 0, 0), tag:

"linkToBlueRectangle");
page.Graphics.FillRectangle(100, 850, 800, 50, Colour.FromRgb(0, 0, 255), tag:

"blueRectangle");

Dictionary<string, string> links = new Dictionary<string, string>() { {

"linkToGitHub", "https://github.com/" }, { "linkToBlueRectangle",

"#blueRectangle" } };

page.SaveAsSVG(@"Links.svg", linkDestinations: links);
document.SaveAsPDF(@"Links.pdf", linkDestinations: links);

This code produces a document with three rectangles: the grey one at the top links to the GitHub home page,
while the red one in the middle is a hyperlink to the blue one at the bottom. Links in PDF documents can refer to
objects that are in a different page than the one containing the link.

The public classes and methods are fully documented (with interactive examples created using Blazor), and you
can find a (much) more detailed code example in MainWindow.xaml.cs. A detailed guide about 3D graphics in
VectSharp.ThreeD is available in the VectSharp.ThreeD folder. Further example code for animations is
available in the DemoAnimation project.

Font libraries

Since version 2.0.0, font names are resolved using a “font library”. This is a class that implements the
VectSharp.IFontLibrary interface, providing methods to obtain a FontFamily object from a string or
a FontFamily.StandardFontFamilies enumeration. The default font library included in VectSharp uses
the embedded fonts (Arimo, Tinos, Cousine) as the standard font families.

In practice, assuming you want to use the default font library, you have the following options to create a
FontFamily object:

using VectSharp;

// ...

FontFamily helvetica = FontFamily.ResolveFontFamily(

FontFamily.StandardFontFamilies.Helvetica); // Will resolve to the Arimo font

family.
FontFamily times = FontFamily.ResolveFontFamily("Times-Roman"); // Will resolve

to the Tinos font family.

These replace the FontFamily(string) and FontFamily(StandardFontFamilies) constructors of
previous versions of VectSharp. Overloads of this method let you specify a list of “fallback” fonts that will be used
if the first font you specify is not available.

If you wish, you can replace the default font library with a different one; this will change the way font families are
resolved. For example, after installing the VectSharp.Fonts.Nimbus NuGet package, you can do:

using VectSharp;

// ...

FontFamily.DefaultFontLibrary = VectSharp.Fonts.Nimbus.Library;

FontFamily helvetica = FontFamily.ResolveFontFamily(

FontFamily.StandardFontFamilies.Helvetica); // Will resolve to the Nimbus Sans

https://arklumpus.github.io/VectSharp
https://arklumpus.github.io/VectSharp
https://arklumpus.github.io/VectSharp
https://github.com/arklumpus/VectSharp/blob/master/VectSharp.Demo/MainWindow.xaml.cs
https://github.com/arklumpus/VectSharp/blob/master/VectSharp.Demo/MainWindow.xaml.cs
https://github.com/arklumpus/VectSharp/tree/master/VectSharp.ThreeD
https://github.com/arklumpus/VectSharp/tree/master/VectSharp.ThreeD
https://github.com/arklumpus/VectSharp/tree/master/VectSharp.ThreeD
https://github.com/arklumpus/VectSharp/tree/master/VectSharp.ThreeD
https://github.com/arklumpus/VectSharp/tree/master/VectSharp.ThreeD
https://github.com/arklumpus/VectSharp/blob/master/VectSharp.DemoAnimation/MainWindow.axaml.cs
https://github.com/arklumpus/VectSharp/blob/master/VectSharp.DemoAnimation/MainWindow.axaml.cs
https://github.com/arklumpus/VectSharp/blob/master/VectSharp.DemoAnimation/MainWindow.axaml.cs
https://www.nuget.org/packages/VectSharp.Fonts.Nimbus/
https://www.nuget.org/packages/VectSharp.Fonts.Nimbus/


L font family.
FontFamily times = FontFamily.ResolveFontFamily("Times-Roman"); // Will resolve

to the Nimbus Roman No 9 L font family.

This will let you re-enable the fonts that were used in previous versions of VectSharp.

You can also use multiple font libraries in the same project. Again, assuming you have installed the
VectSharp.Fonts.Nimbus NuGet package:

using VectSharp;

FontFamily helvetica1 = FontFamily.ResolveFontFamily(

FontFamily.StandardFontFamilies.Helvetica); // Will resolve to the Arimo font

family.
FontFamily times1 = FontFamily.ResolveFontFamily("Times-Roman"); // Will

resolve to the Tinos font family.

FontFamily helvetica2 = VectSharp.Fonts.Nimbus.ResolveFontFamily(

FontFamily.StandardFontFamilies.Helvetica); // Will resolve to the Nimbus Sans

L font family.
FontFamily times2 = VectSharp.Fonts.Nimbus.ResolveFontFamily("Times-Roman"); //

Will resolve to the Nimbus Roman No 9 L font family.

Finally, you can create your own font library class (which could implement things such as dowloading fonts from
Google Fonts, or finding them in the user’s system font directory…) by creating a class that implements the
IFontLibrary interface or that extends the FontLibrary class (in this latter case, you get a default
implementation for the ResolveFontFamily overloads that use a list of fallback fonts).

Creating new output layers

VectSharp can be easily extended to provide additional output layers. To do so:

1. Create a new class implementing the IGraphicsContext interface.
2. Provide an extension method to either the Page or Document types.
3. Somewhere in the extension method, call the CopyToIGraphicsContext method on the

Graphics object of the Page s.
4. Opportunely save or return the rendered result.

Compiling VectSharp from source

The VectSharp source code includes an example project (VectSharp.Demo) presenting how VectSharp can be
used to produce graphics.

To be able to compile VectSharp from source, you will need to install the latest .NET SDK for your operating
system.

You can use Microsoft Visual Studio to compile the program. The following instructions will cover compiling
VectSharp from the command line, instead.

First of all, you will need to download the VectSharp source code: VectSharp.tar.gz and extract it somewhere.

Windows
Open a command-line window in the folder where you have extracted the source code, and type:

BuildDemo <Target>

Where <Target> can be one of Win-x64 , Linux-x64 or Mac-x64 depending on which platform you wish
to generate executables for.

https://dotnet.microsoft.com/download/dotnet/current
https://dotnet.microsoft.com/download/dotnet/current
https://dotnet.microsoft.com/download/dotnet/current
https://visualstudio.microsoft.com/it/vs/
https://visualstudio.microsoft.com/it/vs/
https://visualstudio.microsoft.com/it/vs/
https://visualstudio.microsoft.com/it/vs/
https://github.com/arklumpus/VectSharp/archive/v2.2.1.tar.gz
https://github.com/arklumpus/VectSharp/archive/v2.2.1.tar.gz


In the Release folder and in the appropriate subfolder for the target platform you selected, you will find the
compiled program.

macOS and Linux
Open a terminal in the folder where you have extracted the source code, and type:

./BuildDemo.sh <Target>

Where <Target> can be one of Win-x64 , Linux-x64 or Mac-x64 depending on which platform you wish
to generate executables for.

In the Release folder and in the appropriate subfolder for the target platform you selected, you will find the
compiled program.

If you receive an error about permissions being denied, try typing chmod +x BuildDemo.sh first.

Note about VectSharp.MuPDFUtils and .NET Framework

If you wish to use VectSharp.MuPDFUtils in a .NET Framework project, you will need to manually copy the native
MuPDFWrapper library for the platform you are using to the executable directory (this is done automatically if you
target .NET core).

One way to obtain the appropriate library files is:

1. Manually download the NuGet package for MuPFDCore (click on the “Download package” link on the
right).

2. Rename the .nupkg file so that it has a .zip extension.
3. Extract the zip file.
4. Within the extracted folder, the library files are in the runtimes/xxx-yyy/native/ folder, where

xxx is either linux , osx or win , depending on the platform you are using, and yyy is x64 ,
x86 or arm64 depending on the architecture.

Make sure you copy the appropriate file to the same folder as the executable!

https://www.nuget.org/packages/MuPDFCore/
https://www.nuget.org/packages/MuPDFCore/

	Introduction
	Installing VectSharp
	Usage
	Font libraries
	Creating new output layers
	Compiling VectSharp from source
	Windows
	macOS and Linux

	Note about VectSharp.MuPDFUtils and .NET Framework

