
Package ‘TreeNode’
May 26, 2020

Type Package

Title Read and Write Trees in Binary and NWKA Formats

Version 1.0.0

Author Giorgio Bianchini

Maintainer Giorgio Bianchini <giorgio.bianchini@bristol.ac.uk>

Description The TreeNode package provides functions to read and write files containing phyloge-
netic trees in Binary Tree format and in Newick-with-Attributes (NWKA) format.
TreeNode produces and consumes trees stored in the same phylo or multiPhylo ob-
jects used by the package ape.
More information on TreeNode can be found at https://github.com/arklumpus/TreeNode .

License GPL-3

Encoding UTF-8

LazyData true

Imports Rcpp (>= 1.0.4.6)

LinkingTo Rcpp

SystemRequirements C++17

RoxygenNote 7.1.0

Suggests ape

R topics documented:
begin_writing_binary_trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
finish_writing_binary_trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
keep_writing_binary_trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
read_binary_trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
read_binary_tree_metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
read_nwka_nexus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
read_nwka_tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
read_one_binary_tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
TreeNode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
write_binary_trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
write_nwka_nexus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
write_nwka_tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Index 19

1



2 begin_writing_binary_trees

begin_writing_binary_trees

Write Tree File Header in Binary Format

Description

This function initializes a file that will be used to store trees in binary format.

Usage

begin_writing_binary_trees(file)

Arguments

file A file name.

Details

This function will create an empty header for the binary format file (without writing any trees).
Trees should written after the header using the keep_writing_binary_trees function. The file
should be finalised using the finish_writing_binary_trees function.

Note that, since node names are not stored in the header, files produced with this workflow may be
much larger than files produced using the write_binary_trees function (e.g. if the file contains
many trees which all have the same tip labels). The advantage of this approach is that the trees do
not need to be all available/stored in memory at the same time.

The vector that is returned by this function contains the position at which the first tree will be ap-
pended in the file. This vector should be provided to subsequent calls to keep_writing_binary_trees.

Value

A vector of mode integer, which should be used to keep track of the addresses of trees that will be
added to the file.

Author(s)

Giorgio Bianchini

References

https://github.com/arklumpus/TreeNode/blob/master/BinaryTree.md

See Also

keep_writing_binary_trees, finish_writing_binary_trees, ape, write.tree

https://github.com/arklumpus/TreeNode/blob/master/BinaryTree.md


finish_writing_binary_trees 3

Examples

#A simple tree
tree1 <- ape::read.tree(text = "((A,B),(C,D));")

# Initialise the output file
addresses <- begin_writing_binary_trees("outputFile.tbi")

# Append a tree to the output file
addresses <- keep_writing_binary_trees(tree1, "outputFile.tbi", addresses)

# Some more trees (note that we are overwriting tree1)
tree1 <- ape::read.tree(text = "(((A,B),C),D);")
tree2 <- ape::read.tree(text = "((D,(A,B)),C);")

# Append them to the file
addresses <- keep_writing_binary_trees(tree1, "outputFile.tbi", addresses)
addresses <- keep_writing_binary_trees(tree2, "outputFile.tbi", addresses)

#Some raw data
raw_data <- as.raw(seq(1, 5))

# Finalise the output file
finish_writing_binary_trees("outputFile.tbi", addresses, raw_data)

finish_writing_binary_trees

Finalise Tree File in Binary Format

Description

This function finalises a tree file in binary format.

Usage

finish_writing_binary_trees(
file,
addresses,
additional_data = vector("raw", 0)

)

Arguments

file A file name.

addresses A vector of mode integer containing the addresses of previous trees that have
been added to the file.

additional_data

A vector of mode raw containg additional binary data that will be included
within the tree file.



4 finish_writing_binary_trees

Details

This function will finalise a tree file in binary format, by writing the file trailer containing the
addresses of the trees stored in the file.

Note that, since node names are not stored in the header, files produced with this workflow may be
much larger than files produced using the write_binary_trees function (e.g. if the file contains
many trees which all have the same tip labels). The advantage of this approach is that the trees do
not need to be all available/stored in memory at the same time.

Finalising the file is not strictly necessary, in the sense that a file with a missing or incomplete
trailer can still be parsed. However, parsing such a file requires scanning through the whole file to
determine tree addresses (which is not necessary if they are stored in a proper trailer).

The additional binary data (if any) will be written in the file after the trees and before the trailer.

Author(s)

Giorgio Bianchini

References

https://github.com/arklumpus/TreeNode/blob/master/BinaryTree.md

See Also

begin_writing_binary_trees, keep_writing_binary_trees, ape, write.tree

Examples

#A simple tree
tree1 <- ape::read.tree(text = "((A,B),(C,D));")

# Initialise the output file
addresses <- begin_writing_binary_trees("outputFile.tbi")

# Append a tree to the output file
addresses <- keep_writing_binary_trees(tree1, "outputFile.tbi", addresses)

# Some more trees (note that we are overwriting tree1)
tree1 <- ape::read.tree(text = "(((A,B),C),D);")
tree2 <- ape::read.tree(text = "((D,(A,B)),C);")

# Append them to the file
addresses <- keep_writing_binary_trees(tree1, "outputFile.tbi", addresses)
addresses <- keep_writing_binary_trees(tree2, "outputFile.tbi", addresses)

#Some raw data
raw_data <- as.raw(seq(1, 5))

# Finalise the output file
finish_writing_binary_trees("outputFile.tbi", addresses, raw_data)

https://github.com/arklumpus/TreeNode/blob/master/BinaryTree.md


keep_writing_binary_trees 5

keep_writing_binary_trees

Add Tree to File in Binary Format

Description

This function adds trees to a file in binary format.

Usage

keep_writing_binary_trees(trees, file, addresses)

Arguments

trees An object of class "phylo" or "multiPhylo".

file A file name.

addresses A vector of mode integer containing the addresses of previous trees that have
been added to the file.

Details

This function will append trees in binary format to a file. The file should have been already ini-
tialised by the begin_writing_binary_trees function and may already contain some trees. It
should be finalised using the finish_writing_binary_trees function.

Note that, since node names are not stored in the header, files produced with this workflow may be
much larger than files produced using the write_binary_trees function (e.g. if the file contains
many trees which all have the same tip labels). The advantage of this approach is that the trees do
not need to be all available/stored in memory at the same time.

The vector that is returned by this function contains the position at which the trees have been appen-
dend to the file, as well as the position at which the next tree will be appended. This vector should be
provided to subsequent calls to keep_writing_binary_trees and to finish_writing_binary_trees.

Value

A vector of mode integer containing the addresses of the trees that have been added to the file,
which should be used to keep track of the addresses of subsequent trees.

Author(s)

Giorgio Bianchini

References

https://github.com/arklumpus/TreeNode/blob/master/BinaryTree.md

See Also

write_binary_trees, begin_writing_binary_trees, finish_writing_binary_trees, ape, write.tree

Other functions to write trees: write_binary_trees(), write_nwka_nexus(), write_nwka_tree()

https://github.com/arklumpus/TreeNode/blob/master/BinaryTree.md


6 read_binary_trees

Examples

#A simple tree
tree1 <- ape::read.tree(text = "((A,B),(C,D));")

# Initialise the output file
addresses <- begin_writing_binary_trees("outputFile.tbi")

# Append a tree to the output file
addresses <- keep_writing_binary_trees(tree1, "outputFile.tbi", addresses)

# Some more trees (note that we are overwriting tree1)
tree1 <- ape::read.tree(text = "(((A,B),C),D);")
tree2 <- ape::read.tree(text = "((D,(A,B)),C);")

# Append them to the file
addresses <- keep_writing_binary_trees(tree1, "outputFile.tbi", addresses)
addresses <- keep_writing_binary_trees(tree2, "outputFile.tbi", addresses)

#Some raw data
raw_data <- as.raw(seq(1, 5))

# Finalise the output file
finish_writing_binary_trees("outputFile.tbi", addresses, raw_data)

read_binary_trees Read Tree File in Binary Format

Description

This function reads a file containing one or more trees in binary format.

Usage

read_binary_trees(file, tree.names = NULL, keep.multi = FALSE)

Arguments

file A file name.

tree.names A vector of mode character containing names for the trees that are read from the
file; if NULL (the default), the trees will be named according to the names in the
tree file or, if these are missing, as "tree1", "tree2", ...

keep.multi If TRUE, this function will return an object of class "multiPhylo" even when
the tree file contains only a single tree. Defaults to FALSE, which means that if
the file contains a single tree, an object of class "phylo" is returned.

Details

This function reads the whole file in memory at once. If you wish to process the file tree-by-tree,
you should use the read_one_binary_tree function.

Node attributes (e.g. support values, rates, ages...) are parsed by this function and returned in the
tip.attributes and node.attributes elements of the returned "phylo" objects.



read_binary_trees 7

Attribute names may appear in any kind of casing (e.g. Name, name or NAME), but they should be
treated using case-insensitive comparisons.

If the file has an invalid trailer (e.g. because it is incomplete), the function will print a warning and
attempt anyways to extract as many trees as possible.

Value

An object of class "phylo" or "multiPhylo", compatible with the ape package.

In addition to the elements described in the documentation for the read.tree function of the ape
package, a "phylo" object produced by this function will also have the following components:

tip.attributes A named list of attributes for the tips of the tree. Each element of this list is a
vector of mode character or numeric (depending on the attribute).

node.attributes

A named list of attributes for the internal nodes of the tree. Each element of this
list is a vector of mode character or numeric (depending on the attribute).

Author(s)

Giorgio Bianchini

References

https://github.com/arklumpus/TreeNode/blob/master/BinaryTree.md

See Also

read_one_binary_tree, ape, read.tree

Other functions to read trees: read_nwka_nexus(), read_nwka_tree(), read_one_binary_tree()

Examples

# Tree file (replace with your own)
treeFile <- system.file("extdata", "oneTree.tbi", package="TreeNode")

# Read the tree file
tree <- read_binary_trees(treeFile)

# Use support values as node labels
tree$node.label = tree$node.attributes$Support

# Plot the tree with support values at the nodes
ape::plot.phylo(tree, show.node.label = TRUE)

https://github.com/arklumpus/TreeNode/blob/master/BinaryTree.md


8 read_binary_tree_metadata

read_binary_tree_metadata

Read Tree Metadata in Binary Format

Description

This function reads the metadata from a file containing trees in binary format.

Usage

read_binary_tree_metadata(file, invalid_trailer = c("scan", "fail", "ignore"))

Arguments

file A file name.
invalid_trailer

If this is set to "scan" (the default), if the tree file has an invalid trailer, the
function will print a warning and then read the whole file, attempting to parse as
many trees as possible and storing the addresses of those trees. If this is set to
"fail", an error will be generated if the tree file has an invalid trailer. If this is
set to "ignore" and the tree file has an invalid trailer, a warning will be printed
and the returned object will be missing the TreeAddresses element.

Details

This function reads the metadata information from the header and trailer of a file containing trees
in binary format. This information consists in the addresses of the trees (i.e. byte offsets at which
the data stream describing each tree starts) and in any names or attributes that are stored in the tree
header.

If there are such names or attributes in the header, it usually means that every tree in the file should
have the same names and attributes. However, this is not required by the file format; some (or all)
of the trees in the file may have additional/missing taxa, or additional/missing attributes.

If the file’s trailer is invalid (e.g. because the file is incomplete), the default behaviour is to read
the whole file, attempting to parse as many trees as possible. The trees themselves are discarded,
while their addresses are stored. This is desirable when the concern preventing all the trees in the
file from being read at once (i.e., the use of read_binary_trees) is memory. If this is not the case,
changing the value of invalid_trailer provides alternative ways to deal with this situation, either
by generating an error, or by returning a valid object which is however missing the TreeAddresses
attribute.

Due to limitations with R’s integral types, this function may have issues with files larger than 2GB.

Value

An object of class "BinaryTreeMetadata" with the following components:

GlobalNames A logical value indicating whether the tree file contains a list of names in the
header.

Names Only present if GlobalNames is TRUE. A vector of mode character containing
the names specified in the file header.



read_nwka_nexus 9

GlobalAttributes

A logical value indicating whether the tree file contains a list of attributes in the
header.

Attributes Only present if GlobalAttributes is TRUE. A list of attributes. Each attribute is
itself a list of two elements: AttributeName is a character object describing the
attribute’s name (e.g. "Length"), and IsNumeric describes whether the attribute
represents a numeric value (e.g. a branch’s length) or not.

TreeAddresses A vector of mode integer containing the addresses (i.e. byte offsets from the
start of the file) of the trees. If invalid_trailer is "ignore" and the file has
an invalid trailer, this element will be missing.

Author(s)

Giorgio Bianchini

References

https://github.com/arklumpus/TreeNode/blob/master/BinaryTree.md

See Also

read_binary_trees, read_one_binary_tree, ape, read.tree

Examples

# Tree file (replace with your own)
treeFile <- system.file("extdata", "manyTrees.tbi", package="TreeNode")

# Read the binary tree metadata
meta <- read_binary_tree_metadata(treeFile)

#Print a list of the names defined in the file's header
meta$Names

#Print a list of the attributes defined in the file's header
meta$Attributes

read_nwka_nexus Read Tree File in NEXUS Format with NWKA Trees

Description

This function reads a file containing one or more trees in NEXUS format. Each tree is parsed
according to the Newick-with-Attributes (NWKA) format.

Usage

read_nwka_nexus(file, tree.names = NULL, force.multi = FALSE, debug = FALSE)

https://github.com/arklumpus/TreeNode/blob/master/BinaryTree.md


10 read_nwka_nexus

Arguments

file A file name.

tree.names A vector of mode character containing names for the trees that are read from the
file; if NULL (the default), the trees will be named according to the names in the
tree file or, if these are missing, as "tree1", "tree2", ...

force.multi If TRUE, this function will return an object of class "multiPhylo" even when
the tree file contains only a single tree. Defaults to FALSE, which means that if
the file contains a single tree, an object of class "phylo" is returned.

debug A logical value indicating whether to enable verbose debug output while parsing
the tree. If this is TRUE, the function will print information about each node in
the each tree as it parses it.

Details

Only the Trees block of the NEXUS file is parsed.

Node attributes (e.g. support values, rates, ages...) are parsed by this function and returned in the
tip.attributes and node.attributes elements of the returned "phylo" objects. If the nodes
contain a prob attribute, its value will also be copied to the Support attribute.

The translation table (if any) of the Trees block is used to translate the names of both tips and
internal nodes. However, if the untranslated names of internal nodes are numbers, these may be
interpreted as support values (and thus, not translated).

Attribute names may appear in any kind of casing (e.g. Name, name or NAME), but they should be
treated using case-insensitive comparisons.

Setting the debug argument to TRUE can be useful when analysing malformed trees (to understand
at which point in the tree the problem lies).

Value

An object of class "phylo" or "multiPhylo", compatible with the ape package.

In addition to the elements described in the documentation for the read.tree function of the ape
package, a "phylo" object produced by this function will also have the following components:

tip.attributes A named list of attributes for the tips of the tree. Each element of this list is a
vector of mode character or numeric (depending on the attribute).

node.attributes

A named list of attributes for the internal nodes of the tree. Each element of this
list is a vector of mode character or numeric (depending on the attribute).

Author(s)

Giorgio Bianchini

References

https://github.com/arklumpus/TreeNode/blob/master/NWKA.md

See Also

ape, read.tree, read.nexus

Other functions to read trees: read_binary_trees(), read_nwka_tree(), read_one_binary_tree()

https://github.com/arklumpus/TreeNode/blob/master/NWKA.md


read_nwka_tree 11

read_nwka_tree Read Tree File in NWKA Format

Description

This function reads a file containing one or more trees in Newick-with-Attributes (NWKA) format.

Usage

read_nwka_tree(
file = "",
text = NULL,
tree.names = NULL,
keep.multi = FALSE,
debug = FALSE

)

Arguments

file A file name.

text A variable of mode character containing the tree(s) to parse. By default, this is
set to NULL and ignored (i.e. the tree is read from the file specified by the file
argument); otherwise, the file argument is ignored and the trees are read from
the text argument.

tree.names A vector of mode character containing names for the trees that are read from the
file; if NULL (the default), the trees will be named as "tree1", "tree2", ...

keep.multi If TRUE, this function will return an object of class "multiPhylo" even when
the tree file contains only a single tree. Defaults to FALSE, which means that if
the file contains a single tree, an object of class "phylo" is returned.

debug A logical value indicating whether to enable verbose debug output while parsing
the tree. If this is TRUE, the function will print information about each node in
the tree as it parses it.

Details

The Newick-with-Attributes format parsed by this function is backwards compatible with the Newick/New
Hampshire format and some of its extensions (e.g. Extended Newick, New Hampshire X).

Node attributes (e.g. support values, rates, ages...) are parsed by this function and returned in the
tip.attributes and node.attributes elements of the returned "phylo" objects. If the nodes
contain a prob attribute, its value will also be copied to the Support attribute.

Attribute names may appear in any kind of casing (e.g. Name, name or NAME), but they should be
treated using case-insensitive comparisons.

Setting the debug argument to TRUE can be useful when analysing malformed trees (to understand
at which point in the tree the problem lies).



12 read_nwka_tree

Value

An object of class "phylo" or "multiPhylo", compatible with the ape package.

In addition to the elements described in the documentation for the read.tree function of the ape
package, a "phylo" object produced by this function will also have the following components:

tip.attributes A named list of attributes for the tips of the tree. Each element of this list is a
vector of mode character or numeric (depending on the attribute).

node.attributes

A named list of attributes for the internal nodes of the tree. Each element of this
list is a vector of mode character or numeric (depending on the attribute).

Author(s)

Giorgio Bianchini

References

https://github.com/arklumpus/TreeNode/blob/master/NWKA.md

See Also

ape, read.tree

Other functions to read trees: read_binary_trees(), read_nwka_nexus(), read_one_binary_tree()

Examples

# Parse a tree string
# Topology from https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=207598
tree <- read_nwka_tree(text="(((('Homo sapiens'[rank=species])'Homo'[rank=genus])
'Hominina'[rank=subtribe],(('Pan paniscus'[rank=species],'Pan troglodytes'
[rank=species])'Pan'[rank=genus])'Panina'[rank=subtribe])'Hominini'[rank=tribe],
(('Gorilla gorilla'[rank=species],'Gorilla beringei'[rank=species])'Gorilla'
[rank=genus])'Gorillini'[rank=tribe])'Homininae'[rank=subfamily];")

# Show the tree's structure
str(tree)

# Plot the tree with node labels
ape::plot.phylo(tree, show.node.label = TRUE, node.depth = 2)

# Add taxonomic rank (stored in the "rank" attribute of the tree)
tree$tip.label = paste(tree$tip.attributes$rank, tree$tip.attributes$Name, sep="\n")
tree$node.label = paste(tree$node.attributes$rank, tree$node.attributes$Name, sep="\n")

# Plot again
ape::plot.phylo(tree, show.node.label = TRUE, node.depth = 2, y.lim=c(0.5, 5.5))

https://github.com/arklumpus/TreeNode/blob/master/NWKA.md


read_one_binary_tree 13

read_one_binary_tree Read Tree in Binary Format

Description

This function reads one tree from a file in binary format.

Usage

read_one_binary_tree(file, index = 1, address = NA, metadata = NA)

Arguments

file A file name.

index The index of the tree that should be read (starting from 1).

address The address (i.e. byte offset from the start of the file) of the tree that should be
read.

metadata An object of class "BinaryTreeMetadata" containing the metadata extracted
from the tree file. If this is not provided, it will be read from the file (see details).

Details

This function extracts only one tree from the file. The information provided by metadata is used to
determine where in the file the requested tree starts. If this is not provided, this function will read
the metadata from the file (using the read_binary_tree_metadata function).

Reusing the metadata is efficient when multiple trees need to be read from the same file (so that the
metadata only needs to be read once).

Node attributes (e.g. support values, rates, ages...) are parsed by this function and returned in the
tip.attributes and node.attributes elements of the returned "phylo" objects.

Attribute names may appear in any kind of casing (e.g. Name, name or NAME), but they should be
treated using case-insensitive comparisons.

Due to limitations with R’s integral types, this function may have issues with files larger than 2GB.

Value

An object of class "phylo", compatible with the ape package.

In addition to the elements described in the documentation for the read.tree function of the ape
package, a "phylo" object produced by this function will also have the following components:

tip.attributes A named list of attributes for the tips of the tree. Each element of this list is a
vector of mode character or numeric (depending on the attribute).

node.attributes

A named list of attributes for the internal nodes of the tree. Each element of this
list is a vector of mode character or numeric (depending on the attribute).

Author(s)

Giorgio Bianchini



14 TreeNode

References

https://github.com/arklumpus/TreeNode/blob/master/BinaryTree.md

See Also

read_binary_trees, read_binary_tree_metadata, ape, read.tree

Other functions to read trees: read_binary_trees(), read_nwka_nexus(), read_nwka_tree()

Examples

# Tree file (replace with your own)
treeFile <- system.file("extdata", "manyTrees.tbi", package="TreeNode")

# Read the 5th tree in the file
tree <- read_one_binary_tree(treeFile, 5)
#Do something with the tree

# Read the binary tree metadata
meta <- read_binary_tree_metadata(treeFile)

# Process every tree in the file
for (add in meta$TreeAddresses)
{

tree <- read_one_binary_tree(treeFile, address = add, metadata = meta)
#Do something with the tree

}

TreeNode TreeNode: Read and Write Trees in Binary and NWKA Formats

Description

The TreeNode package provides functions to read and write files containing phylogenetic trees in
Binary Tree format and in Newick-with-Attributes (NWKA) format.

TreeNode produces and consumes trees stored in the same "phylo" or "multiPhylo" objects used
by the package ape.

More information on TreeNode can be found at https://github.com/arklumpus/TreeNode.

Author(s)

Giorgio Bianchini

Maintainer: Giorgio Bianchini <giorgio.bianchini@bristol.ac.uk>

References

Paradis, E., Claude, J. and Strimmer, K. (2004) APE: analyses of phylogenetics and evolution in R
language. Bioinformatics, 20, 289-290

https://github.com/arklumpus/TreeNode/blob/master/BinaryTree.md
https://github.com/arklumpus/TreeNode


write_binary_trees 15

See Also

https://github.com/arklumpus/TreeNode, ape

write_binary_trees Write Tree File in Binary Format

Description

This function writes one or more trees to a file in binary format.

Usage

write_binary_trees(trees, file, additional_data = vector("raw", 0))

Arguments

trees An object of class "phylo" or "multiPhylo".
file A file name.
additional_data

A vector of mode raw containg additional binary data that will be included
within the tree file.

Details

This function writes all the trees at once. If you wish to write the trees one at a time, you should
use the keep_writing_binary_trees function.

This function will analyse all the trees to determine whether it is appropriate to include any names
or attributes in the file header. It will then write the header, the trees and conclude the file with an
appropriate trailer.

The tip names can be specified either as a Name element in the tree’s tip.attributes element, or
as the tip.label element of the tree. If both are specified, the values stored in the Name attribute
take precedence (this allows backward compatibility for trees created using ape).

The node names and support values can similarly be specified either with a Name or Support element
in the tree’s node.attributes, or as the tree’s node.label. If all the node labels can be parsed
as numbers, they will be assumed to contain support values; otherwise, they will be assumed to
contain node names. If the node.attributes already contain a Name or Support element, the node
labels will be ignored.

The additional binary data (if any) will be written in the file after the trees and before the trailer.

Author(s)

Giorgio Bianchini

References

https://github.com/arklumpus/TreeNode/blob/master/BinaryTree.md

See Also

keep_writing_binary_trees, ape, write.tree

Other functions to write trees: keep_writing_binary_trees(), write_nwka_nexus(), write_nwka_tree()

https://github.com/arklumpus/TreeNode
https://github.com/arklumpus/TreeNode/blob/master/BinaryTree.md


16 write_nwka_nexus

write_nwka_nexus Write Tree File in NEXUS format

Description

This function writes one or more trees to a NEXUS format file. Within the NEXUS file, the trees
are stored in the Newick-with-Attributes (NWKA) format.

Usage

write_nwka_nexus(trees, file, translate = TRUE, translate_quotes = TRUE)

Arguments

trees An object of class "phylo" or "multiPhylo".

file A file name.

translate If this is TRUE (the default), the produced nexus tree will contain, in addition
to the Trees block, a Taxa block containing the taxon labels, as well as a
Translate instruction in the Trees block. Otherwise, it will only contain a
Trees block without a Translate instruction.

translate_quotes

If this is TRUE (the default), the entries in the Taxa block and in the Translate
instruction will be placed within single quotes. Otherwise, they will be written
without single quotes.

Details

Only the tip labels are included in the Taxa block and the Translate instruction (if applicable).

The trees inside the NEXUS file will be stored in NWKA format, including all of the available
attributes. This is compatible with the NEXUS specification, because attributes that cannot be
represented in standard Newick format are enclosed within square brackets ([]);

The tip names can be specified either as a Name element in the tree’s tip.attributes element, or
as the tip.label element of the tree. If both are specified, the values stored in the Name attribute
take precedence (this allows backward compatibility for trees created using ape).

The node names and support values can similarly be specified either with a Name or Support element
in the tree’s node.attributes, or as the tree’s node.label. If all the node labels can be parsed
as numbers, they will be assumed to contain support values; otherwise, they will be assumed to
contain node names. If the node.attributes already contain a Name or Support element, the node
labels will be ignored.

Author(s)

Giorgio Bianchini

References

https://github.com/arklumpus/TreeNode/blob/master/NWKA.md

https://github.com/arklumpus/TreeNode/blob/master/NWKA.md


write_nwka_tree 17

See Also

ape, write.nexus

Other functions to write trees: keep_writing_binary_trees(), write_binary_trees(), write_nwka_tree()

write_nwka_tree Write Tree File in NWKA format

Description

This function writes one or more trees in Newick-with-Attributes (NWKA) format to a file or to the
standard output.

Usage

write_nwka_tree(trees, file = "", append = FALSE, nwka = TRUE, quotes = FALSE)

Arguments

trees An object of class "phylo" or "multiPhylo".

file A file name. If this is "" (the default), the tree will be written on the standard
output.

append If this is FALSE (the default), the output file (if it exists already) is truncated
before writing trees (i.e. overwritten). If this is TRUE, the trees are appended at
the end of the output file.

nwka If this is TRUE (the default), the tree will be written in Newick-with-Attributes
(NWKA) format. Otherwise, the tree will be written in Newick format (and
attributes that cannot be represented in this format will be lost).

quotes If nwka = FALSE, this argument determines whether names in the tree file will be
enclosed within single quotes (if this is TRUE) or not (if this is FALSE).

Details

All of the available attributes are written to the file if nwka = TRUE. Otherwise, (if available) the tip
names and lenghts are always written, as well as the internal nodes’ lenghts and support values. If
nodes have a name, this is only included if they do not have a support value as well.

The tip names can be specified either as a Name element in the tree’s tip.attributes element, or
as the tip.label element of the tree. If both are specified, the values stored in the Name attribute
take precedence (this allows backward compatibility for trees created using ape).

The node names and support values can similarly be specified either with a Name or Support element
in the tree’s node.attributes, or as the tree’s node.label. If all the node labels can be parsed
as numbers, they will be assumed to contain support values; otherwise, they will be assumed to
contain node names. If the node.attributes already contain a Name or Support element, the node
labels will be ignored.

No attempt is made to fix problematic labels. Thus, if the tip or node names contain special char-
acters, an invalid output may be produced. For example, if the labels contain spaces or commas
and enwk and quotes are both FALSE, the output tree may not be parsed correctly. If you wish to
produce a tree conforming to the Newick format while fixing problematic tip labels, you should
look into the write.tree function of the ape package.



18 write_nwka_tree

Author(s)

Giorgio Bianchini

References

https://github.com/arklumpus/TreeNode/blob/master/NWKA.md

See Also

ape, write.tree

Other functions to write trees: keep_writing_binary_trees(), write_binary_trees(), write_nwka_nexus()

Examples

# Parse a tree string
# Topology from https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=207598
tree <- read_nwka_tree(text="(((('Homo sapiens'[rank=species])'Homo'[rank=genus])
'Hominina'[rank=subtribe],(('Pan paniscus'[rank=species],'Pan troglodytes'
[rank=species])'Pan'[rank=genus])'Panina'[rank=subtribe])'Hominini'[rank=tribe],
(('Gorilla gorilla'[rank=species],'Gorilla beringei'[rank=species])'Gorilla'
[rank=genus])'Gorillini'[rank=tribe])'Homininae'[rank=subfamily];")

# Print the tree to the standard output in NWKA format
cat(write_nwka_tree(tree))

# Print the tree to the standard output in Newick format without quotes
cat(write_nwka_tree(tree, nwka = FALSE))

# Print the tree to the standard output in Newick format with quotes
cat(write_nwka_tree(tree, nwka = FALSE, quotes = TRUE))

https://github.com/arklumpus/TreeNode/blob/master/NWKA.md


Index

∗ functions to read trees
read_binary_trees, 6
read_nwka_nexus, 9
read_nwka_tree, 11
read_one_binary_tree, 13

∗ functions to write trees
keep_writing_binary_trees, 5
write_binary_trees, 15
write_nwka_nexus, 16
write_nwka_tree, 17

ape, 2, 4, 5, 7, 9, 10, 12–18

begin_writing_binary_trees, 2, 4, 5

finish_writing_binary_trees, 2, 3, 5

keep_writing_binary_trees, 2, 4, 5, 5, 15,
17, 18

read.nexus, 10
read.tree, 7, 9, 10, 12–14
read_binary_tree_metadata, 8, 13, 14
read_binary_trees, 6, 8–10, 12, 14
read_nwka_nexus, 7, 9, 12, 14
read_nwka_tree, 7, 10, 11, 14
read_one_binary_tree, 6, 7, 9, 10, 12, 13

TreeNode, 14

write.nexus, 17
write.tree, 2, 4, 5, 15, 17, 18
write_binary_trees, 2, 4, 5, 15, 17, 18
write_nwka_nexus, 5, 15, 16, 18
write_nwka_tree, 5, 15, 17, 17

19


	begin_writing_binary_trees
	finish_writing_binary_trees
	keep_writing_binary_trees
	read_binary_trees
	read_binary_tree_metadata
	read_nwka_nexus
	read_nwka_tree
	read_one_binary_tree
	TreeNode
	write_binary_trees
	write_nwka_nexus
	write_nwka_tree
	Index

